
Data Center TCP (DCTCP)

Networking Services Team, Red Hat

Florian Westphal
1024D/F260502D fw@strlen.de

1C81 1AD5 EA8F 3047 7555
E8EE 5E2F DA6C F260 502D

February 6th 2015

Introduction to Congestion Control and ECN

TCP Congestion Control – History

Did not exist in the early days.

RFC 793: “[..] segments may be lost due to [..] network
congestion, TCP uses retransmission (after a timeout) to
ensure delivery..”

Sender transmits as much data it has to send & current rwnd
allows

Massive problems, ca. 1986: → congestion collapse: most
packets in networks were retransmits

RFC 2581 – TCP congestion control

Slow Start, Congestion avoidance: cwnd – sender imposed flow
control
Fast Retransmit & Fast Recovery

Introduction to Congestion Control and ECN

Congestion Control (simplified, Reno)

0

5

10

15

20

Time →

cw
n

d

slow start congestion avoidance

Introduction to Congestion Control and ECN

Congestion Control Issues

Not trivial to decide when to grow/shrink cwnd value

Link might have large delay
Packet reordering does happen
Even if packets have been lost: not neccessarily due to
congestion
Available network capacity is not constant

Active research topic, dozens of different algorithms

Introduction to Congestion Control and ECN

Linux TCP + Congestion Control: Architecture

Many different congestion control algorithms

Default: CUBIC (since 2006)

Plugin-based congestion control framework

Different algorithms give different weight to the available
information (e.g. rtt, duplicate acks, rwin, ...):

Hybla: don’t penalize connections with high rtt
Veno: less aggressive cwnd decrease on loss
. . .

Introduction to Congestion Control and ECN

Linux TCP + Congestion Control:
Configuration

sysctl net.ipv4.tcp_congestion_control=vegas

ip route add $dst dev $dev congctl vegas1

setsockopt(.., TCP_CONGESTION, "vegas", ..);

Every tcp connection has exactly one assigned algorithm

But individual connection can each use different one

13.20, http://git.kernel.org/cgit/linux/kernel/git/davem/
net-next.git/commit/?id=81164413ad096bafe8ad1068f3f095a7dd081d8b

http://git.kernel.org/cgit/linux/kernel/git/davem/net-next.git/commit/?id=81164413ad096bafe8ad1068f3f095a7dd081d8b
http://git.kernel.org/cgit/linux/kernel/git/davem/net-next.git/commit/?id=81164413ad096bafe8ad1068f3f095a7dd081d8b

Queueing

Congestion Control – Queueing

Router

Source

Source

Destination

1000 Mbit

1000 Mbit

100 Mbit

ingress: median arrival rate in a given interval
ingress > Egress: queue starts to form

Queueing

Issues for senders

Bufferbloat: too big buffers take sender longer to realize loss
when it occurs

Too small buffers can cause needless loss during short bursts

Simple ”drop when buffers are full” can affect many flows →
global synchronization, incast

Queueing

Wishlist

Want to know about loss asap

Active queue management in switches/routers

e.g. RED: drop with increasing probability once buffers start
filling up
also: sfb, codel, fq codel, choke, . . .

Ideally . . .

Allow detection of imminent congestion before loss occurs

Explicit Congestion Notification

Explicit Congestion Notification (ECN)

Extension to IP to allow routers/switches to signal congestion
before packets are dropped

Uses two bits in the IPv4 header TOS octet, 3 states:

1 ECN-unaware (00)
2 Two ECN-Nonces, 01 and 10 – ECN-aware
3 Congestion experienced (11)

receiver can detect when congestion occurs

but only sender could do something about it

Explicit Congestion Notification

ECN & TCP

Two new TCP header flags: ECN-echo & Congestion Window
Reduced

ECE: Used by receiver to inform sender that it received
CE-marked packet

CWR: Used by sender to tell Receiver that congestion window
was reduced

Use is ”negotiated” during three-way-handhake

To enable on Linux:
net.ipv4.tcp_ecn=1 or
ip route change 192.168.2.0/24 dev eth0 features ecn2

23.20, http://git.kernel.org/cgit/linux/kernel/git/davem/
net-next.git/commit/?id=f7b3bec6f5167efaf56b756abfafb924cb1d3050

 http://git.kernel.org/cgit/linux/kernel/git/davem/net-next.git/commit/?id=f7b3bec6f5167efaf56b756abfafb924cb1d3050
 http://git.kernel.org/cgit/linux/kernel/git/davem/net-next.git/commit/?id=f7b3bec6f5167efaf56b756abfafb924cb1d3050

Explicit Congestion Notification

ECN issues

bugs in middleboxes (e.g. firewalls, tcp ”accelerators“, etc):

ECN Blackholes: packets with SYN+CWR+ECE bits set are
dropped
All packets might get CE marked (even more frequent with
ipv6).
Even if signalling would work: proper marking (virtually) never
happens

Design:

Doesn’t quantify the extent of the congestion, only presence

lots of pain for little gain

. . . And thus virtually no default-on

Explicit Congestion Notification

Summary

Current tcp stacks are very good at detecting loss & loss
recovery

But loss still bad for latency

ECN supported by all major OS and switch firmware

Problematic due to myriad of implementation bugs /
misconfigurations

But if you have full control over all nodes involved (e.g.
within datacenter . . .)

Data Center TCP (DCTCP)

Datacenter TCP

Designed as improvement to TCP Congestion Control for DC
traffic

1 High burst tolerance (incast due to to partition/aggregate)
2 Low latency (short flows, queries)
3 High throughput (large file transfers)

ECN is used to estimate amount of bytes that experienced
congestion (i.e., extent, not just presence)

P P P M M M . . . M Taildrop

K

Headroom Tailroom
enough tolerance to absorb bursts

Suggested mark threshold k for 10Gbit Ethernet: 65 packets
(≈ 100KB)

Data Center TCP (DCTCP)

DCTCP: congestion estimate

SND.UNA, SND.NXT used as ’observation window’
Add counters for marked and total bytes
for each acceptable ack:

1 Count the bytes acked

2 If ack has ECE set, also count those bytes as ”marked”

3 If SND.UNA not yet reached, stop; else update alpha:

1 Compute F : (marked
total)

2 Compute αnew = (1− g) ∗ αprev + g ∗ F
3 Start new observation window, valid until current SND.NXT

acknowledged

F fraction of packets marked in last window

g is weight given to new samples (default: 1
16)

Data Center TCP (DCTCP)

DCTCP: cwnd computation

α represents fraction of marked packets
Congestion window is computated as follows:

cwndnew = cwndprev ∗ 1− α

2

α ≈ 0 little/no congestion, α ≈ 1: high/full congestion

Everything depends on realistic estimate of the marked bytes

How to infer when one of our data packets was marked?

Simple and wrong solution: send ack for every single packet

Data Center TCP (DCTCP)

DCTCP: ACK generation state machinery

CE= 0

CE= 1

normal ACKs
send quick ACK

(delayed) ECE ACK
send quick ACK with ECE

quickacks are only sent when state changes.

Data Center TCP (DCTCP)

DCTCP: Implementation

DCTCP congestion control module

Stack was extended to provide a couple of more events to
modules

CC modules can now indicate (force) ECN

Fallback to Reno CC if peer doesn’t support ECN

Easiest way to enable:
ip route change dev eth0 10.0.0.7/24 congctl dctcp

Data Center TCP (DCTCP)

DCTCP: Operation

Read Documentation/networking/dctcp.txt

Suggest to only enable it for local network(s), not globally:
ip route ... congctl dctcp

Don’t need extra ecn-tuning on end-hosts, ecn will be used
automatically

$ ss -nite

Send-Q Local Address:Port Peer Address:Port

12408 192.168.7.10:22 192.168.7.1:35274 [..]

dctcp [..] ce_state 0 alpha 312 ab_ecn 2896 ab_tot 0

Data Center TCP (DCTCP)

DCTCP: Problems

$ ss -nite

Send-Q Local Address:Port Peer Address:Port

12408 192.168.7.10:22 192.168.7.1:35274 [..]

dctcp [..] ce_state 0 alpha 312 ab_ecn 2896 ab_tot 0

dctcp-reno: fallback mode: other host using e.g. CUBIC
with ecn off

alpha: if large (max 1024): huge congestion or middlebox
marking all packets

Data Center TCP (DCTCP)

DCTCP: results from data center deployment4

Latency (in ms):
CUBIC DCTCP

Mean 4.0088 0.04219

Median 4.055 0.0395

Max 4.2 0.085

Min 3.32 0.028

Stddev 0.1666 0.01064

Throughput3, in Mbps:
CUBIC DCTCP

Mean 521.684 521.895

Median 464 523

Max 776 527

Min 403 519

Stddev 105.891 2.601

3per flow, 19 senders in parallel
4http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.

git/commit/?id=e3118e8359bb7

http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=e3118e8359bb7
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=e3118e8359bb7

Issues and future work

DCTCP: Issues

Must configure all routers/switches to mark at k

Must separate DCTCP and TCP traffic on switches (e.g. via
DSCP marking) to maintain fairness

Pure ACK loss breaks congestion estimate

Both paper and ietf draft are not clear on a few details, e.g.

Should α be changed on loss?
. . . only on timeout?

Questions?

Issues and future work

Bibliography

M. Alizadeh, A. Greenberg, D.A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, M. Sridharan:
Data Center TCP (DCTCP), Data Center Networks session
Proc. ACM SIGCOMM, New Delhi, 2010.
http://simula.stanford.edu/~alizade/Site/DCTCP_

files/dctcp-final.pdf

S. Bensley, L. Eggert, D. Thaler
Microsoft’s Datacenter TCP (DCTCP): TCP Congestion
Control for Datacenters
http:

//tools.ietf.org/html/draft-bensley-tcpm-dctcp-02

http://simula.stanford.edu/~alizade/Site/DCTCP_files/dctcp-final.pdf
http://simula.stanford.edu/~alizade/Site/DCTCP_files/dctcp-final.pdf
http://tools.ietf.org/html/draft-bensley-tcpm-dctcp-02
http://tools.ietf.org/html/draft-bensley-tcpm-dctcp-02

	Introduction to Congestion Control and ECN
	Queueing
	Explicit Congestion Notification
	Data Center TCP (DCTCP)
	Issues and future work

