
A roaring journey through sk_buff and net_device
From Userspace through the Networking Subsystem into the Driver – and back again

Florian Westphal, Hagen Paul Pfeifer
fw@strlen.de — hagen@jauu.net

Hochschule Furtwangen,
Computer Networking – Fakultät Informatik

Furtwangen, Germany

Jan. 17th 2008

mailto:fw@strlen.de --- hagen@jauu.net


Preface
I Requirements:

• Low latency

• High througput

• Low CPU and memory utilization

• Fair behavior against other protocols and components

I Driver specific code is based on e1000 adapter (exceptions are marked)

I No e1000 feature show today (sorry – that presentation was held last time ;-)

/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states

outside socket context is ugly, certainly. What can I do? */

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 2 | 32



NIC Initialization
I Initialization: pci_register_driver()→ e1000_probe()

I request_irq()→ registers IRQ handler

I e1000_open() (called when if is made active)

1. Allocate transmit descriptors e1000_setup_all_tx_resources()

2. Allocate receive descriptors e1000_setup_all_rx_resources()

3. Power up e1000_power_up_phy()

4. Tell firmware that we are the NIC is now open e1000_get_hw_control()

5. Allocate interrupt e1000_request_irq()

6. e1000_configure_rx()

I BTW: SA_SAMPLE_RANDOM

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 3 | 32



Virtual vs. Real Devices
I Each network device is represented by a instance of net_device structure

I Virtual Devices:

• Build on top of a real (or virtual) device

• Bonding, VLAN (802.1Q), IPIP, GRE, . . .

• Similar handling like real devices (register device et cetera)

I Real Devices:

• RTL 8139/8169/8168/8101 ;-)

I Mappings n : m

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 4 | 32



Frame Arrival – Hippie Revival
I Interrupt Handler: e1000_intr()→ __netif_rx_schedule()

I Iterrupt handler branch to arival workmode

I Get RX ring address (and current offset) (e1000_clean_rx_irq_PS())

I Get frame size and status from DMA buffer (E1000_WRITE_REG, le32_to_cpu() and
friends)

I Receive Checksum Offload e1000_rx_checksum()

I Allocate new buffer: dev_alloc_skb() (non-NAPI)

I skb_copy_to_linear_data

I Get protocol: eth_type_trans() and update statistics

I net/core/dev.c:netif_rx()→ save data in CPU input queue (Limit:
net.core.netdev_max_backlog) and netif_rx_schedule()

I NAPI: netif_rx_schedule() and netif_rx_schedule_prep() directly

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 5 | 32



Frame Transmission
I hard_start_xmit(): driver/hardware specific network stack→ Hardware entry point

I hard_start_xmit()→ NETIF_F_LLTX (Duplicate Transmission Locking)

I e1000_xmit_frame

1. tx_ring = adapter->tx_ring;

2. Sanity checks (skb->len <= 0, adapter workarounds and friends)

3. Count frags: count += TXD_USE_COUNT(len, max_txd_pwr); (thousends of
errata)

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 6 | 32



4. Flush e1000_tx_queue()

static void e1000_tx_queue(struct e1000_adapter *adapter,

struct e1000_tx_ring *tx_ring, int tx_flags, int count)

{

[...]

while (count--) {

buffer_info = &tx_ring->buffer_info[i];

tx_desc = E1000_TX_DESC(*tx_ring, i);

tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);

tx_desc->lower.data = cpu_to_le32(txd_lower | buffer_info->length);

tx_desc->upper.data = cpu_to_le32(txd_upper);

if (unlikely(++i == tx_ring->count)) i = 0;

}

[...]

writel(i, adapter->hw.hw_addr + tx_ring->tdt);

[...]

}

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 7 | 32



Queuing Disciplines
I Each NIC has a assigned queuing discipline

I The egress queue is handled by tc

I L2 Congestion Management: Ingress Path: throtteling?→ UDP? TCP? No (ECN?
Maybe!)

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 8 | 32



Protocol Support
ETH_P_IP net/ipv4/ip_input.c:ip_rcv()

ETH_P_ARP net/ipv4/arp.c:arp_rcv()

ETH_P_IPV6 net/ipv6/ip6_input.c:ipv6_rcv()

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 9 | 32



Software IRQ
I To delay work (IRQ handler isn’t the right place)

I Backlog queue per CPU

I CPU IRQ affinity

I After system call or IRQ handler returns

I Optimized for SMP/CMP systems

I NET_RX_SOFTIRQ

I 4 ? S< 0:00 [ksoftirqd/0]

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 10 | 32



NIC Data Mode: poll vs. interrupt
I Interrupt based:

• NIC informs the driver if new data is available

• Interrupt: new data, transmission failures and DMA transfer completed
(e1000_clean_tx_irq())

• Queues the frame for further processing

I Polling based:

• Driver check the device constantly if new data is available

• Pure polling is rare!

I Currently: NAPI (“interrupt-polled-driven”, “site:jauu.net filetype:pdf napi”)

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 11 | 32



Network Driver Principles
I Each device driver register themselves (register_netdevice(); linked list of

network devices)

I include/linux/netdevice.h:struct net_device:
• char name[IFNAMSIZ];

• unsigned long mem_end, mem_start, base_addr, irq;

• unsigned long state;

• int (*init)(struct net_device *dev);

• unsigned long features;

• NETIF_F_SG, NETIF_F_HW_CSUM, NETIF_F_HIGHDMA,, . . .

• int ifindex, mtu;

• void *ip_ptr, *ip6_ptr;

• int (*poll) (struct net_device *dev, int *quota);

• struct Qdisc *qdisc;

• int (*hard_start_xmit) (struct sk_buff *skb, struct net_device *dev);

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 12 | 32



Frame reception - Polling or Interrupt driven
I Interrupt driven, Polling based or both

I Interrupt driven:

• NIC generate a hardware interrupt

• The kernel is interrupted from other activities

• The registered interrupted handler is called

I Polling based:

• continually check NIC HW register if new frames arrived

I Interrupt/Polling mix; Interrupt mitigation

I Challenges:

• For low traffic the interrupt scheme is the most favorable option (ratio
overhead/utility)

• For high traffic the permanent interruption is contra productive

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 13 | 32



View From Userspace
I Socket Descriptor (int fd)

I can perform I/O on socket descriptor depending on socket state

I Various syscalls to create sockets/change state, etc

• socket(), listen(), connect(), etc.

I Kernel keeps track of socket state

I real communication (the protocol itself) handled by kernel

I Kernel maps each process’ descriptor to a structure

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 14 | 32



How to tell if descriptor is a socket?
I current->files: open file table structure

I contains list of struct file

I if (file->f_op == &socket_file_ops) return file->private_data;

I f_op/socket_file_ops: struct file_operations

• function pointers for read,write,ioctl,mmap,open,... hence the name: all
deal with file operations

• socket_file_ops is the file_operations structure for sockets

• if file->f_op is something other than the socket fops, this is not a socket ;)

I ->private_data points to a socket structure

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 15 | 32



socket structure
I Represents a Socket

I identifies:

• socket type (SOCK_STREAM, etc).

• socket state (SS_CONNECTED, etc).

I contains pointers to various other structures, incl. proto_ops and struct sock

I also contains wait queue/wakelist, etc.

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 16 | 32



sock structure
I Network layer representation of sockets

I large structure (≈ 60 members)

I contains protocol id, packets send/receive queue heads, listen backlog, timers,
peercred, . . .

I also has some callbacks:

void (*sk_state_change)(struct sock *sk);

void (*sk_data_ready)(struct sock *sk, int bytes);

void (*sk_write_space)(struct sock *sk);

void (*sk_error_report)(struct sock *sk);

int (*sk_backlog_rcv)(struct sock *sk,

struct sk_buff *skb);

void (*sk_destruct)(struct sock *sk);

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 17 | 32



struct proto_ops
I Recap:

• fd→ struct file

• struct file has f_ops (== socket_file_ops in case of sockets)

• struct file also has a pointer to private data (which points to socket structure)

• socket structure has struct sock (see previous slide). Also has proto_ops.

I struct proto_ops contains the (family dependent) implementation of socket
functions: bind, connect, setsockopt, . . .

I Example (simplified):

asmlinkage long sys_listen(int fd, int backlog) {

struct socket *sock;

sock = sockfd_lookup_light(fd, &err, &fput_needed);

return sock->ops->listen(sock, backlog);

}

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 18 | 32



struct proto
I struct proto: socket layer→ transport layer interface. Example:

struct proto tcp_prot = {

.name = "TCP",

.owner = THIS_MODULE,

.close = tcp_close,

.connect = tcp_v4_connect,

[..]

I struct inet_protosw: transport→ network interface. Example:

static struct inet_protosw inetsw_array[] = {

{

.type = SOCK_STREAM,

.protocol = IPPROTO_TCP,

[..]

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 19 | 32



AF_INET internals
net/ipv4/af_inet.c:

const struct proto_ops inet_stream_ops = {

.family = PF_INET,

[..]

}

const struct proto_ops inet_dgram_ops = {

.family = PF_INET,

[..]

Linux AF_INET implementation holds valid proto_ops inside an array.
Assignment to sock structure depends on socket(2) arguments

static struct inet_protosw inetsw_array[] = {

{

.type = SOCK_STREAM, .protocol = IPPROTO_TCP,

.prot = &tcp_prot, .ops = &inet_stream_ops,

[..]

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 20 | 32



Socket creation
Userspace does: socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)

I kernel allocates a new inode/socket. BTW: grep sockfs /proc/filesystems

I kernel sets sock->type as specified by User

I checks if family (=AF_INET in our case) is known
(net_proto_family[family] != NULL)

I calls net_proto_family[family]->create

• create function must be implemented by all address families

• address families register themselves at the socket layer at initialization

• in our case create will be inet_create()

I inet_create() searches inet_protosw inetsw_array[] for the requested
type/protocol pair

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 21 | 32



Socket creation (2)
I sets sock->ops and other values as specified in inetsw_array.

I allocates new struct sock (sk), records struct proto as specified in
inetsw_array (in our case &tcp_prot)

I finally calls sk->sk_prot->init() (i.e. tcp_v4_init_sock, set in &tcp_prot)

• sets TCP specific stuff: ssthresh, mss_cache, tcp_init_congestion_ops, etc.

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 22 | 32



From write to the wire...
Lets have a look what happens when data ist written to a socket via write.

I kernel looks up the corresponding struct file.

I we end up inside vfs_write(), which calls file->f_op->aio_write(). (i.e.
socket_file_ops)

I eventually we end up in sock_sendmsg(), which then calls sock->ops->sendmsg
(i.e. inet_protosw’s entry for SOCK_STREAM/IPPROTO_TCP: inet_stream_ops)

• now we are at the TCP level (sock->ops->sendmsg is tcp_sendmsg).

• will look at TCP state (connecting, being shut down, . . . )

• fetches a skb from write queue

• if no skb: allocate new one, or: sk_stream_wait_memory()

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 23 | 32



skbuffs
I struct skbuff: The most important data structure in the Linux networking subsystem.

I every packet received/sent is handled using the skbuff structure

I problems to solve:

•Memory accounting.

• Queueing of packets.

• parsing of layer 2/3/4 protocol information.

• insertion of additional headers at the beginning of packet, etc.

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 24 | 32



skbuff mapped to a packet

next/prev: List management (think ’receive/send queue this skb is on’)
sk_buff_data_t: pointer or offset (unsigned int, 64 bit platforms)

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 25 | 32



struct sk_buff
I struct sk_buff { [..]

• struct sock *sk;: An skb is mapped to a socket, e.g. for memory accounting

• ktime_t tstamp;: skb-timestamping (packet sniffer, TCP_CONG_RTT_STAMP, . . . ):
net_timestamp(), i.e. normally unused

• struct net_device *dev;: interface skb arrived on/leaves by

• struct dst_entry *dst;: Destination cache/routing. Keeps track of pmtu and
other properties; also deals with route (e.g. link down).

• Destination cache/routing. Keeps track of pmtu and other properties; also deals
with route (e.g. link down).
Has struct dst_ops which are implemented by each (network) protocol

• char cb[48]: e.g. TCP control block (sequence number, flag, SACK, . . . )

• keeps track of total length, data length, cloned etc.

• optional pointers for _NF_CONTRACK, bridge, traffic shaping, . . .

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 26 | 32



skb_headroom

I skb_headroom/_tailroom(): return number of bytes left at head/tail

I http://www.skbuff.net/skbbasic.html

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 27 | 32



skb_push/_pull

I skb_push/_pull: adjusts headroom for tailroom adjustment: skb_put/_trim

I http://www.skbuff.net/skbbasic.html

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 28 | 32



Sending a TCP frame
I recap: We are sending data via TCP, tcp_sendmsg has picked an skb to use.

I checks skb_tailroom(). If nonzero, calls skb_add_data which copies data from
userspace into skbuff.

I if tailroom exhausted, use fragment list (skb_shinfo(skb)->nr_frags)

I if fraglist unusable (pageslots busy, !(sk->sk_route_caps & NETIF_F_SG)): push
skb and alloc new segment

I eventually calls tcp_write_xmit

• Does MTU probing (tcp_mtu_probe), depending on TCP state

• takes first skb from send queue

• calls tcp_transmit_skb(skb, ...) and advances send_head, i.e. ’packet is
sent’.

• tcp_transmit_skb: builds TCP header and hands skb to IP layer
(ip_queue_xmit(), via icsk->icsk_af_ops->queue_xmit(skb, ..)

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 29 | 32



Sending IP frame
I ip_queue_xmit(): make sure packet can be routed (sets skb->dst)

I Builds IP header

I Packet is handed to netfilter

I If everything ok: skb->dst->output(skb); (ip_output()).

• sets skb->dev = skb->dst->dev

• Packet is handed to netfilter (Postrouting!), calls ip_finish_output if ok.

• finally: dst->neighbour->output(). . .

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 30 | 32



Almost done... need Layer 2 address
I Our journey through the protocol stack is almost done: net/ipv4/arp.c

static struct neigh_ops arp_generic_ops = {

.family = AF_INET,

[..]

.output = neigh_resolve_output,

};

static struct neigh_ops arp_direct_ops = {

.family = AF_INET,

.output = dev_queue_xmit,

__skb_queue_tail(&neigh->arp_queue, skb) if NUD_INCOMPLETE

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 31 | 32



dev_queue_xmit
I has to linearize the skb, e.g. if device doesn’t support DMA from highmem and at least

one page is highmem

I if device dev->qdisc != NULL, skb is enqueued now q->enqueue(skb, q);

I now a queue run is triggered (unless device is stopped...), eventually calls

I qdisc_restart()

• dequeues skb from the qdisc, acquires per-cpu TX lock

• ret = dev->hard_start_xmit

switch (ret) {

case NETDEV_TX_OK: /* Driver sent out skb successfully */

[..]

default: /* Driver returned NETDEV_TX_BUSY - requeue skb */

ret = dev_requeue_skb(skb, dev, q);

A JOURNEY THROUGH SK_BUFF AND NET_DEVICE 32 | 32


	Preface
	NIC Initialization
	Virtual vs. Real Devices
	Frame Arrival -- Hippie Revival
	Frame Transmission
	Queuing Disciplines
	Protocol Support
	Software IRQ
	NIC Data Mode: poll vs. interrupt
	Network Driver Principles
	Frame reception
	Usespace POV
	fd to socket
	socket structure
	sock structure
	proto_ops
	proto
	AF_INET
	Socket creation
	Socket creation
	write to wire
	skbuffs
	skbuff
	struct
	_headroom
	_push
	TCP frame
	IP frame
	ARP
	dev_queue_xmit

