
recent and ongoing netfilter work

Florian Westphal
4096R/AD5FF600 fw@strlen.de

80A9 20C5 B203 E069 F586
AE9F 7091 A8D9 AD5F F600

Red Hat

netdev 0x13, Prague

High-level netfilter overview

NF_HOOK()

PREROUTING Routing

INPUT

program

OUTPUT

FORWARDING

POSTROUTING

jump labels to keep overhead close to 0 if unused

connection tracking uses almost all hook locations
single iptables -A FORWARD -m conntrack ...: indirect calls from base hooks
alone:

1. defrag in (prerouting)

2. conntrack in (prerouting)

3. filter table (input)

4. conntrack confirm/helper (input)

5. filter table (forward)

6. defrag out (output)

7. filter table (output)

8. conntrack local (output)

9. conntrack confirm/helper (postrouting)

4 base hooks (indirect calls) for each packet (4.20: 5)
nat, mangle and/or raw table(s) bring in even more
necessary evil: usually called functions reside in kernel modules

indirect calls are a problem nowadays

indirect calls are expensive – adding NOTRACK rules has almost no noticeable effect
anymore in some benchmarks:
iptables -t raw -p tcp --dport 12345 -j NOTRACK

I one indirect call for raw prerouting, one for output

I one indirect call for tcp port match

I one indirect call for NOTRACK target

conntrack packet path is (now) free of indirect calls
nf nat packet path work almost done by now
indirections remaining for nf_conn destruction: wip

(Mostly) useless indirection: defrag hook

I most packets are not ip(v6) fragments

I we eat indirect call cost, only to return immediately in almost all cases
I merge back into conntrack hooks?

I impacts raw table functionality, probably not doable without breaking existing setups

I Could attempt to annotate defrag hook and do the ”is fragment” check in the
netfilter core
I not nice from a design (layering) point of view
I might be worth trying to see how ugly this would look like (ipv6!)

nf tables

I terminology: ”expression” is nft kernel equivalent of iptables matches and/or
target

I functionality of xtables modules is usually replicated by combining several
expressions, e.g. meta + cmp or payload + range

I some expressions are handled directly in evaluation loop: not even a direct
function call done

I all built-in expressions (cmp, payload, meta, . . .) are called directly
I indirections only for those that are modular

I make more built-in? Several candidates exist, e.g. counter
I set infrastructure should probably be made built-in too
I some are ok as-is, e.g. nft_log (not hot path)

I could add small built-in replica of modular ones, e.g. nft_ct version that can only
handle ct status.

nf tables (2)

I NAT support for the ’inet’ family almost complete, nat ipv4/ipv6 modules are
gone
I protocol trackers merged with nf nat core
I ipv6 dependencies handled via indirect call (CONFIG_IPV6=m) or direct one

(CONFIG_IPV6=y)

I no need to add two nat tables for simple “oif ethX masquerade” anymore

I for dnat/snat, new syntax:

table inet nat { [..]

detect af from network protocol context:

ip6 daddr dead::2::1 dnat to dead:2::99

use new dnat ip6 keyword:

dnat ip6 to dead:2::99

^^^

}

nf tables (3)

broute support (select packet for routing rather than bridging)

I requires refactoring to make ebtables broute work via normal hook infra

I current broute hook will be removed

I ebtables broute table will continue to work as-is

I nft will use explicit broute expression (ebtables overloads DROP)

