nnetfilter listification

Florian Westphal
4096R/AD5FF600 fw®strlen.de
80A9 20C5 B203 E069 F586
AE9F 7091 A8D9 ADSF F600

Red Hat

July 2019



Problem statement

> rx processing passes one skb to higher layers at a time

» several places (gro, backlog dequeue) could build lists containing more than one
skb

» parts of stack have list-processing eqivalents, up to ipv4 input
» currently does list deconstruction/construction where needed
» e.g. for netfilter, nf/tc ingress, rps, and so on

> is there anything useful netfilter could do with this?



current state from nf point of view

static inline void
NF_HOOK_LIST(u8 pf, u8 hook, struct net *net, struct sock *sk,
struct list_head *head, struct net_device *in, struct net_device *out,
int (*okfn) (struct net *, struct sock *, struct sk_buff %))
{
struct sk_buff *skb, *next;
LIST_HEAD_INIT(sublist);

list_for_each_entry_safe(skb, next, head, list) {
list_del(&skb->1list);
if (nf_hook(pf, hook, net, sk, skb, in, out, okfn) == 1)
list_add_tail (&skb->1ist, &sublist);
}
list_splice(&sublist, head);
}

In short, iterate over list, pass each skb through netfilter core, collect results.



more desireable state

static inline void
NF_HOOK_PRERQUTING_LIST(u8 pf,
struct list_head *head,
int (*okfn) (struct net *, struct sock *, struct sk_buff %))
{
nf_hook_prerouting(pf, head, okfn);
}

» sk and outdev are always NULL
» net, indev can differ for each skb

> list gets passed into netfilter core

But how does that help?



inital step is easy ...

nf_hook_slow_list(list_head *head, nf_hook_state *state,

[..]

const struct nf_hook_entries *e)

list_for_each_entry_safe(skb, next, head, list) {

}

list_del (&skb->1list);
state->indev = skb->dev;
state->net = dev_net(skb->dev);
ret = nf_hook_slow(skb, state, e);
if (ret == 1)
list_add_tail (&skb->1list, &sublist);

list_splice(&sublist, head);

}

pushes list deconstruction into nf core, so only minimal saves (we fetch list of hooks to
run once per list, not per skb).



but then it becomes hard

core problem:

typedef unsigned int nf_hookfn(void *priv,
struct sk_buff *skb,
const struct nf_hook_state *state);

> this is the function that all netfilter hooks implement

» can't be changed unless all are converted at once

» huge code churn

> very repetitive code pattern: 1list_for_each_entry_safe everyhere

» even worse: we lose return value — all hooks need to handle drop/queue/stolen

Can we convert gradually?
Which hooks are most useful /promising?



Gradual conversion

» could extend core to support both 'priv, skb, state’ and ’priv, list, state’
arguments for hook functions
> annotation tells core if list is needed or not

nf_hook_slow_list(list)
for_each_hookfn(entries) {
if (is_listified(e->hookfn)) {
nf_call_listfn(e->hookfn, priv, list, state);
} else {
for_each_skb_in_list(list) {
list_del (&skb->1list);
ret = nf_call_hookfn(e->hookfn, priv, skb, state);

if (ret == NF_ACCEPT) {
list_add_tail (&skb->1list, &sublist);
[..] /* Handle other verdicts */



Problems so far

» causes frequent list iterations in netfilter core

» can't be avoided: converted hook needs to iterate too

> saves indirect calls

» converted hook could try to be a bit smarter: we know when skbs are done

> this would be great for flow table infrastructure (which hooks at ingress).



ingress hook

» used by the fast-forward fastpath (software fallback for flow offloading)

> with list instead of skb we would know when batch is done

» could extend/patch stack to leverage xmit_more to NIC, i.e. delay TXTD update
until the last packet

» major problem: network core doesn't pass a list to the function that calls
nf_ingress



ingress hook (2)

__netif_receive_skb_list_core(struct list_head *head,

{
struct packet_type *pt_curr = NULL;/* Current (common) ptype of sublist *

struct net_device *od_curr = NULL; /* Current (common) orig_dev of sublis
LIST_HEAD_INIT(sublist);
struct sk_buff *skb, *next;

list_for_each_entry_safe(skb, next, head, list) {
struct packet_type *pt_prev = NULL;

__netif_receive_skb_core(skb, pfmemalloc, &pt_prev); // nf_ingress()
if (!pt_prev) continue;

_netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);

}



Summary

» listification for netfilter seems doable, but questionable for several reasons

» code churn
» one list loop per (converted) hook
» "save indirect call” is not worth the pain

> seems better to investigate alternative for the fast forwarding path (flow table)

» needs work outside of netfilter (bulk xmit) first



