
ns-3-nsc
Using real-world network stacks in discrete-event network simulation

Florian Westphal

21st June 2008

1024D/F260502D <fw@strlen.de>
1C81 1AD5 EA8F 3047 7555
E8EE 5E2F DA6C F260 502D

- ns-3-nsc -



Agenda

• Introduction to ns-3 and simulation

• Design and model

• creating simulations

• Introduction to NSC

• NSCs design

• ns-3-nsc archiˆW plumbing

• TODO and Wishlist

- ns-3-nsc - 1



ns-3

• network simulator for internet systems

• successor to ns-2

• development started in 2006, work in progress

• written in C++

• GPL v2 license

- ns-3-nsc - 2



ns-3 and ns-2

ns-2:

• consists of a C++ core and an OTcl interpreter “frontend”

• network topology is set up using OTcl script

ns-3:

• builds a shared library, libns3.so (there is no “ns3” program)

• simulations are written in C++

• python bindings are being worked on

- ns-3-nsc - 3



ns-3 simulation

• programmatic description of network:

– create node objects
– create network topology
– assign ip addresses, etc.

• simulation is run by the ns-3 scheduler

• simulation time moves from event-to-event

Outputs: pcap traces (per interface); customizeable trace namespace to get
particular events (eg. ipv4 tx on interface i1)

- ns-3-nsc - 4



ns3 layers

• Applications: socket API, OnOff Application, Sink, . . .

• Transport Layer: TCP, UDP

• Network Layer: IPv4, Routing (static), . . .

• Link Layer: PPP, CSMA, WiFi, . . .

• Physical Layer: Loss, Delay, . . .

- ns-3-nsc - 5



ns-3 nomenclature/concepts

• A simulated network has Nodes (”computers”)

• Each node uses a particular protocol stack, e.g. TCP/IP

• Node can run applications that talk to network via socket-like interface

• Nodes have one or more NetDevices (”network interfaces”)

• network interfaces are connected to particular Channels, e.g. PPP,
CSMA, . . .

• Data is exchanged using Packets

- ns-3-nsc - 6



The Packet class

• Abstraction for network packets

• contains byte buffer with a serialized representation of packet

• methods to add/remove protocol headers and data

• can add metadata/“tags” to a packet

All Headers are also classes, with Serialize/Deserialize methods

- ns-3-nsc - 7



ns-3 model

Application

Socket-like API

PPP, CSMA-Channel, etc.

Protocol
Stack

Node

Packet(s)

Net-Device
Channel

Protocol
Stack

Node
Net-Device

Application

Source: ns-3 tutorial slides, by Tom Henderson[1]

- ns-3-nsc - 8



a high level topology structure

Node2

eth0

eth0

wlan0

Node0

Node1

eth0

eth1

Node3

Node4
wlan0

wlan0

Channel

Channel

Channel

Video client
Application

Video server
Application

(taken from paper by Mathieu Lacage, used with kind permission)

- ns-3-nsc - 9



describing a topology – 2 nodes, ethernet

int main (...) {
NodeContainer c0;
c0.Create (2);

Then, create a csma channel: CsmaHelper csma;. Can set properties, e.g.
Delay and DataRate:

csma.SetChannelParameter ("DataRate", StringValue ("10Mbps"));
csma.SetChannelParameter ("Delay", TimeValue (MicroSeconds(500)));

Next, connect the nodes in the container to this channel:
NetDeviceContainer dev0 = csma.Install (c0);

- ns-3-nsc - 10



setting IP addresses

InternetStackHelper internet;
internet.Install (c);
Ipv4AddressHelper ipv4;
ipv4.SetBase("192.168.0.0", "255.255.255.0");
ipv4.Assign(dev0);

and a routing method: GlobalRouteManager::PopulateRoutingTables();
Assign() automatically sets up proper IP addresses within the subnet.

- ns-3-nsc - 11



Setting applications

Set up a TCP discard service:

PacketSinkHelper sink("ns3::TcpSocketFactory",
InetSocketAddress(Ipv4Address::GetAny (), Port));

. . . install it on node 2 and start it ’now’

ApplicationContainer apps = sink.Install (c.Get (1));
apps.Start (Seconds (0));

- ns-3-nsc - 12



Creating an application

Now all we need is to create an application... ns-3 offers a socket-like
interface.

Ptr<Socket> localSocket =
Socket::CreateSocket(c.Get (0), TcpSocketFactory::GetTypeId());

Simulator::ScheduleNow(&StartFlow, localSocket, bytecount,
Ipv4Address("192.168.0.2"), Port);

This creates a new local socket and calls a method ”StartFlow” at the start
of the simulation.

- ns-3-nsc - 13



StartFlow

void StartFlow(Ptr<Socket> localSocket, uint32_t nBytes,
Ipv4Address servAddress, uint16_t servPort) {

localSocket->Connect(InetSocketAddress (servAddress, servPort));

localSocket->SetConnectCallback (MakeCallback (&CloseConnection),
Callback<void, Ptr<Socket> > ());

uint32_t sent;
while (sent < nBytes) {
[..]
ret = localSocket->Send (data, curSize);
[..]

- ns-3-nsc - 14



Starting the simulation

Need to call Simulator::Run (); to run the simulation. Can call
CsmaHelper::EnablePcapAll ("tcp-large-transfer"); before that
to get pcap-dumps of all interfaces.

$ /usr/sbin/tcpdump -n -r tcp-large-transfer-1-0.pcap
reading from file tcp-large-transfer-1-0.pcap,

link-type EN10MB (Ethernet)
02:00:00.000044 arp who-has 192.168.0.2

(ff:ff:ff:ff:ff:ff)tell 192.168.0.1
[..]

- ns-3-nsc - 15



NSC – network simulation cradle

• developed by Sam Jansen at WAND, 1st release 2005

• essentially provides wrapper/glue to run a kernel TCP/IP stack in user
space

• . . . and in a network simulator

• runs FreeBSD 5.3, OpenBSD 3.5 and Linux 2.6.18 network stacks

• NSC is fairly independent of the actual network simulator

• → want to use NSC with ns-3

TCP Stack ↔ NSC ↔ Network Simulator

- ns-3-nsc - 16



ns-3-nsc goal...

• want to hide all NSC details, if possible

• want to use recent real-world network stacks in simulation

• for the time being, hooks into InternetStackHelper:

internet.SetNscTcp("Linux");

- ns-3-nsc - 17



NSC – architecture

• Main Problem: A stack is usually only for a single host

– need separate stacks for each node in the simulation
– Nowadays, one could try to re-use e.g. Linux Network Namespaces

(OS Virtualization) ⇒ Stack specific, not all support namespaces

• NSC solution: (Mostly) Automated source code transformation using the
”globalizer”

• each stack is compiled into a shared library (e.g. liblinux2.6.18.so)

- ns-3-nsc - 18



The globalizer

• The globalizer is a program to transform C code

• No simple search & replace (macros, typedefs, variables on stack, . . . )

• Reads (preprocessed) C code from stdin and writes result to stdout

• Also reads a list of global symbols to be replaced, e.g. global_var
function/static_var

• Outputs the transformed program code ”long global_var →
long global_var[NUM_STACKS]” ”global_var = x→ global_var[get_stack_id()] = x”

• Globalizer also handles cases like *global_var = &global_2

- ns-3-nsc - 19



Cradle

• the cradle provides the neccessary infrastructure for each network stack

• fake ethernet driver

• lots of support code (e.g. Linux:)

– copy_from_user → memcpy
– register_filesystem, inode handling, . . .
– kernel start up routine (”do_initcalls”)

• cradle also defines API to map syscalls and set up the stack

• defines timer interrupt method that is called by the simulator periodically
(e.g. every 10 ms)

- ns-3-nsc - 20



NSC API

NSC provides its API in the form of classes

• INetStack class:

– low level network stack functions: eth driver Input, sysct, . . .
– also has method to create new Sockets (INetStreamSocket).

• INetStreamSocket

– a connection endpoint (“file descriptor”), belongs to a stack instance
– methods to change state of endpoint: e.g. connect, accept . . .
– methods to read/write data

- ns-3-nsc - 21



nsc callbacks

• ISendCallback

– called when NSC sends a packet out to the network
– called by NSCs ethernet driver
– This hook is used to re-inject packet into the simulator

• IInterruptCallback

– called by NSC whenever something “interesting” happens
– the Linux NSC glue calls this when the stack calls __wake_up
– the simulator can then check for state change on the connection

endpoints

- ns-3-nsc - 22



ns-3 TCP model

- ns-3-nsc - 23



Integration work...

most of ns3-nsc-glue resides in two classes:

• NscTcpL4Protocol (wraps the actual stack)

– maps the stack (shared library) using dlopen()
– deals with in/and output to the NSC ethernet driver

• NscTcpSocketImpl (wraps a INetStreamSocket)

– deals with socket in/output
– does not push any data to NscTcpL4Protocol directly

- ns-3-nsc - 24



ns-3-nsc model

Application

nsc-tcp-Socket

nsctcp-Protocol

IPv4-L3-Protocol

Net-Device

Send (Packet or raw data)

uses socket objects
(send, receive)

node can have multiple devices

Channel

PPP, CSMA-Channel, etc.

Wakeup

InetStreamSocket
send/read data

nsc syscall glue

received ip packet

send callback
nsc eth driver

wakeup TCP/IP Stack

nsc library

- ns-3-nsc - 25



Current state...

• simple scenarios work well

• can observe e.g. SACK with Linux hosts

• can run mixed setups, i.e. Linux ↔ FreeBSD

• there are bugs, e.g. segfault if NSC receives packet (from netdevice)
before a socket is created

• NSC has to be extended to provide information needed by ns-3 (eg peer
IP address)

- ns-3-nsc - 26



ns-3-nsc Wishlist...

• ns-3 is still in the alpha stage, e.g. ns-3-nsc needs to queue data in
SYN SENT state

• impossible to identify errors, because errno values are stack dependant

– need some kind of nsc errno to map to corresponding stack errno

• no setsockopt interface in ns-3-nsc (NSC supports this)

• same for sysctl

- ns-3-nsc - 27



Sources/Literature/Acknowledgements

1 Tom Henderson. ns-3 tutorial slides, simultools 08 conference.
http://www.nsnam.org/tutorials/simutools08/
ns-3-tutorial-slides.pdf

• NSC pages: http://www.wand.net.nz/~stj2/nsc/

• ns3 project homepage: http://www.nsnam.org

Thanks to: Mathieu Lacage, Tom Henderson, Sam Jansen & The ns-3 team.

- ns-3-nsc - 28


