ns-3-nsc

Using real-world network stacks in discrete-event network simulation

Florian Westphal

21st June 2008

1024D/F260502D <fw@strlen.de>
1C81 1AD5 EA8F 3047 7555
ESEE H5E2F DA6C F260 502D

- ns-3-nsc -

Agenda

e Introduction to ns-3 and simulation
e Design and model

e creating simulations

e Introduction to NSC

e NSCs design

e ns-3-nsc archi”W plumbing

e TODO and Wishlist

- ns-3-nsc -

ns-3

e network simulator for internet systems

e successor to ns-2

e development started in 2006, work in progress
e written in C++

e GPL v2 license

- ns-3-nsc -

ns-3 and ns-2

ns-2:
e consists of a C++ core and an OTcl interpreter “frontend”
e network topology is set up using OTcl script
ns-3:
e builds a shared library, 1ibns3.so (there is no “ns3" program)
e simulations are written in C4++

e python bindings are being worked on

- ns-3-nsc -

ns-3 simulation

e programmatic description of network:

— create node objects
— create network topology
— assign ip addresses, etc.

e simulation is run by the ns-3 scheduler

e simulation time moves from event-to-event

Outputs: pcap traces (per interface); customizeable trace namespace to get
particular events (eg. ipv4 tx on interface i1)

- ns-3-nsc -

ns3 layers

e Applications: socket API, OnOff Application, Sink, . ..
e Transport Layer: TCP, UDP

e Network Layer: IPv4, Routing (static), . . .

e Link Layer: PPP, CSMA, WiFi, . ..

e Physical Layer: Loss, Delay, . . .

- ns-3-nsc -

ns-3 nomenclature/concepts

e A simulated network has Nodes (" computers”)

e Each node uses a particular protocol stack, e.g. TCP/IP

e Node can run applications that talk to network via socket-like interface
e Nodes have one or more NetDevices (" network interfaces”)

e network interfaces are connected to particular Channels, e.g. PPP,
CSMA, . ..

e Data is exchanged using Packets

- ns-3-nsc - 6

The Packet class

e Abstraction for network packets
e contains byte buffer with a serialized representation of packet
e methods to add/remove protocol headers and data

e can add metadata/"“tags” to a packet

All Headers are also classes, with Serialize/Deserialize methods

- ns-3-nsc -

—————————————=
Application
S

s

Protocol
Stack

ocket-like API
)

J

(3Net-Device

. Node

ns-3 model

Packet(s)

[
Channel

Source: ns-3 tutorial slides, by Tom Henderson|[1]

- ns-3-nsc -

“ PPP, CSMA-Channel, etc.

L

s

Protocol
Stack

~\

J

)\
(Application]]

Net-Device))

Node

J

a high level topology structure

: —p| etho

:

1
Nodel | |g—

:

P AN R A

L) ethl

Node3 <—> wlanO

—>
-------------------------- L e = =|===d=x NodeO
<—> Channel <—> ethO — :
1
: 1
1
1
1
........................... --- 1
<—> Channel 4—> ethO <_: Video server
1
1 Application
:
1
1
1
I---
<—> Channel <—> wlanO <> : Node?2
1:
1
1
: Noded Video client
: oded \q—Pp
1

wlanO

Application

(taken from paper by Mathieu Lacage, used with kind permission)

- ns-3-nsc -

describing a topology — 2 nodes, ethernet

int main (...) {
NodeContainer cO;
cO.Create (2);

Then, create a csma channel: CsmaHelper csma;. Can set properties, e.g.
Delay and DataRate:

csma.SetChannelParameter ("DataRate", StringValue ("10Mbps"));
csma.SetChannelParameter ("Delay", TimeValue (MicroSeconds(500)));

Next, connect the nodes in the container to this channel:
NetDeviceContainer devO = csma.Install (c0);

- ns-3-nsc - 10

setting IP addresses

InternetStackHelper internet;
internet.Install (c);

Ipv4AddressHelper ipv4;
ipv4.SetBase("192.168.0.0", "255.255.255.0");

ipv4.Assign(devO) ;

and a routing method: GlobalRouteManager: :PopulateRoutingTables () ;
Assign() automatically sets up proper IP addresses within the subnet.

- ns-3-nsc - 11

Setting applications
Set up a TCP discard service:

PacketSinkHelper sink("ns3::TcpSocketFactory",
InetSocketAddress(Ipv4Address: :GetAny (), Port));

. install it on node 2 and start it 'now’

ApplicationContainer apps = sink.Install (c.Get (1));
apps.Start (Seconds (0));

- ns-3-nsc -

12

Creating an application

Now all we need is to create an application... ns-3 offers a socket-like
interface.

Ptr<Socket> localSocket =
Socket: :CreateSocket(c.Get (0), TcpSocketFactory::GetTypeld());
Simulator: :ScheduleNow(&StartFlow, localSocket, bytecount,
Ipv4Address("192.168.0.2"), Port);

This creates a new local socket and calls a method " StartFlow” at the start
of the simulation.

- ns-3-nsc - 13

StartFlow

void StartFlow(Ptr<Socket> localSocket, uint32_t nBytes,
Ipv4Address servAddress, uintl6_t servPort) {
localSocket->Connect (InetSocketAddress (servAddress, servPort));

localSocket->SetConnectCallback (MakeCallback (&CloseConnection),
Callback<void, Ptr<Socket> > ());
uint32_t sent;
while (sent < nBytes) {
[..]
ret = localSocket->Send (data, curSize);

[..]

- ns-3-nsc - 14

Starting the simulation

Need to call Simulator::Run (); to run the simulation. Can call
CsmaHelper: :EnablePcapAll ("tcp-large-transfer"); before that
to get pcap-dumps of all interfaces.

$ /usr/sbin/tcpdump -n -r tcp-large-transfer-1-0.pcap
reading from file tcp-large-transfer-1-0.pcap,
link-type EN1OMB (Ethernet)
02:00:00.000044 arp who-has 192.168.0.2
(ff:ff:ff:ff:£ff:ff)tell 192.168.0.1

[..]

- ns-3-nsc - 15

NSC — network simulation cradle

e developed by Sam Jansen at WAND, 1st release 2005

e essentially provides wrapper/glue to run a kernel TCP/IP stack in user
space

e .. .and in a network simulator
e runs FreeBSD 5.3, OpenBSD 3.5 and Linux 2.6.18 network stacks
e NSC is fairly independent of the actual network simulator

e — want to use NSC with ns-3

TCP Stack <= NSC < Network Simulator

- ns-3-nsc - 16

ns-3-nsc goal...

e want to hide all NSC details, if possible
e want to use recent real-world network stacks in simulation
e for the time being, hooks into InternetStackHelper:

internet.SetNscTcp("Linux");

- ns-3-nsc -

17

NSC - architecture

e Main Problem: A stack is usually only for a single host

— need separate stacks for each node in the simulation
— Nowadays, one could try to re-use e.g. Linux Network Namespaces
(OS Virtualization) = Stack specific, not all support namespaces

NSC solution: (Mostly) Automated source code transformation using the
" globalizer”

e cach stack is compiled into a shared library (e.g. 1iblinux2.6.18.s0)

- ns-3-nsc - 18

The globalizer

e The globalizer is a program to transform C code
e No simple search & replace (macros, typedefs, variables on stack, . . .)
e Reads (preprocessed) C code from stdin and writes result to stdout

e Also reads a list of global symbols to be replaced, e.g. global_var
function/static_var

e Outputs the transformed program code "long global_var —
long global_var [NUM_STACKS]" "global_var = x — global_var[get_sta

e Globalizer also handles cases like *global_var = &global_2

- ns-3-nsc - 19

Cradle

e the cradle provides the neccessary infrastructure for each network stack
e fake ethernet driver

e lots of support code (e.g. Linux:)

— copy_from_user — memcpy
— register_filesystemn, inode handling, . ..
— kernel start up routine ("do_initcalls")

e cradle also defines APl to map syscalls and set up the stack

e defines timer interrupt method that is called by the simulator periodically
(e.g. every 10 ms)

- ns-3-nsc - 20

NSC API

NSC provides its APl in the form of classes

e INetStack class:

— low level network stack functions: eth driver Input, sysct, . ..
— also has method to create new Sockets (INetStreamSocket).

o |NetStreamSocket

— a connection endpoint (“file descriptor”), belongs to a stack instance
— methods to change state of endpoint: e.g. connect, accept . ..
— methods to read/write data

- ns-3-nsc - 21

nsc callbacks

e |SendCallback

— called when NSC sends a packet out to the network
— called by NSCs ethernet driver
— This hook is used to re-inject packet into the simulator

e lInterruptCallback

— called by NSC whenever something “interesting” happens
— the Linux NSC glue calls this when the stack calls __wake_up
— the simulator can then check for state change on the connection

endpoints

- ns-3-nsc - 22

Application)

ns-3 TCP model

uses socket objects
(send, receive)

Send (Packet or raw data)

.
Tcp-Socket)

Send (Packet)
cp-L4-Protocol)

IPv4-L3-Protocol)

Most TCP work: Sequence Number,
retrans, Window size,.

Add TCP Header,
receiver TCP <-> Socket Lookup

Add IP Header, Route/Arp Lookup, etc

node can have multiple devices

)

- ns-3-nsc -

PPP, CSMA-Channel, etc.

Protocol

(

Stack

()

\\

P

Net-Device Net-Device
Channel

23

Integration work...

most of ns3-nsc-glue resides in two classes:

e NscTcpL4Protocol (wraps the actual stack)

— maps the stack (shared library) using dlopen()
— deals with in/and output to the NSC ethernet driver

e NscTcpSocketlmpl (wraps a INetStreamSocket)

— deals with socket in/output
— does not push any data to NscTcpL4Protocol directly

- ns-3-nsc -

24

Application)
Send (Packet or

ns-3-nsc model
uses socket objects

.
nsc-tcp-Socket)

Wakeup

nsctcp-ProtocoI)

(send, receive)
raw data)) nsc library .
InetStreamSocket |(nsc syscall glue)
send/read data

wakeup TCP/IP Stack)
< send callback

received ip packetwk

| v4-L3-ProtocoI))

node can have multiple devices

&

- ns-3-nsc -

nsc eth driver)
W,

Net-Device
Channel)

PPP, CSMA-Channel, etc.

25

Current state...

e simple scenarios work well
e can observe e.g. SACK with Linux hosts
e can run mixed setups, i.e. Linux < FreeBSD

e there are bugs, e.g. segfault if NSC receives packet (from netdevice)
before a socket is created

e NSC has to be extended to provide information needed by ns-3 (eg peer
IP address)

- ns-3-nsc - 26

ns-3-nsc Wishlist...

e ns-3 is still in the alpha stage, e.g. ns-3-nsc needs to queue data in
SYN_SENT state

e impossible to identify errors, because errno values are stack dependant

— need some kind of nsc_errno to map to corresponding stack errno
e no setsockopt interface in ns-3-nsc (NSC supports this)

e same for sysctl

- ns-3-nsc - 27

Sources/Literature/Acknowledgements

1 Tom Henderson. ns-3 tutorial slides, simultools 08 conference.
http://www.nsnam.org/tutorials/simutools08/
ns-3-tutorial-slides.pdf

e NSC pages: http://www.wand.net.nz/"stj2/nsc/

e ns3 project homepage: http://www.nsnam.org

Thanks to: Mathieu Lacage, Tom Henderson, Sam Jansen & The ns-3 team.

- ns-3-nsc - 28

