
SKB Metadata Extensions

Net-Virt Team, Red Hat

Florian Westphal
4096R/AD5FF600 fw@strlen.de

80A9 20C5 B203 E069 F586
AE9F 7091 A8D9 AD5F F600

March 2019



Agenda

1 Introduction

2 Motivation

3 Extensions

4 Alternatives



Introduction

sk buff and external data – history

struct sk_buff is the main networking data structure

associates raw (“on wire”) data and “data about that data”

pointer to packet data
pointer to network device, socket, route
pointers/offset to where network, transport header etc. are
list pointers
also: checksum, timestamp, packet hash, refcount, etc.

hard to make changes to it – almost always has performance implications

structure size and layout (access patterns)

initialization cost

already large structure



Introduction

sk buff and external data – history (2)

October 2002: IPSEC transform engine and bridge-nf get added

struct sk_buff gains two members:

pointer to sec path (ipsec transform information)
pointer to bridge netfilter meta data (e.g. which bridge port received packet)

both are pretty much same:

Only allocated on demand
Refcounted
hook into skb clone/copy/free functions

Unlike e.g. skb->{sk,dev}: referenced data gets released with the skb



Motivation

Fast forward to 2018 ...

Out-of-tree multipath implementation needs to store additional meta data

main use case: DSS map (logical 64bit mptcp sequence number to individual tcp
sequence numbers)

Natural place to store this: skb->cb[]

Problem: not enough space left

add second control buffer towards skb end?
add yet another pointer to sk buff for "struct mptcp_skb_data"?
external (percpu) storage?

would like to upstream mptcp eventually



Extensions

skb extensions (1)

mptcp Requirements are very similar to those of transform/sec path and bridge nf

Idea: Unify them and replace skb->sp and skb->nf_bridge with
skb->extensions

Unifies secpath and nf bridge hooks in clone/copy/free paths
on skb clone, increment refcount of extension structure (no copy)
on skb free, decrement refcount of extension structure (and free if 0)

Assumes no extensions are needed (added) in most cases

if MPTCP finds a better way to solve the DSS map issue: all good, otherwise use
the extension framework



Extensions

skb extensions (2)

Must be able to add all extensions at the same time

Must be able to delete an extension again

add enum with two extension ids: SKB_EXT_{BRIDGE_NF,SEC_PATH}

add 2nd new member: u8 active_extensions

flag field that lists all active extensions
callers can check skb->active_extension & EXTENSION_ID
Without this we get following problem:

extensions a and b are active
skb is cloned
extension a is to be disabled

with active_extensions: can just unset EXTENSION_ID bit
otherwise, always need to kmemdup: “disable this extension” would fail under
memory pressure

upside of 2nd field: can keep “extension” pointer in undefined state



Extensions

skb ext extension structure

Container structure: reference count, allocated space, actual data

struct skb_ext {

refcount_t refcnt;

u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */

u8 chunks; /* same */

char data[0] __aligned(8);

};

Accessible via skb->extensions

Individual extensions start at extension.offset[id]



Extensions

when first extension gets added ...

always allocates all memory at once (fixed size allocation)

first extension allocated comes first in memory, i.e.
extension.offset[added_id] is 1

has several advantages:

can use kmem cache

memory contents undefined, we only initialize skb_ext part

so no added cost from larger allocation

no need to add krealloc support



Extensions

When a new extension might make sense

1 Data is related to the skb/packet aggregate

2 Data should be freed when the skb is free’d

3 Data is not going to be relevant/needed in normal case (udp, tcp, ...)

4 There are no actions needed on clone/free, such as callbacks into kernel modules

If one of the above doesn’t hold, answer is likely “Not the infrastructure you’re looking
for”



Alternatives

When a new extension makes no sense: alternatives

1 store extra data in the skb ”shared info” block

unchanged on clone

2 add a second control buffer block at the end of sk_buff

not zeroed out on allocation
doesn’t change position of other struct members

3 add a control block at the end of struct sk_buff_fclones

only works for outgoing skbs allocated via alloc_skb_fclone


	Introduction
	Motivation
	Extensions
	Alternatives

